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In a toroidal nonaxisymmetric plasma, the radial electric field is determined by the con- 
straint that the radial ion and electron fluxes be equal. This ambipolarity relationship is in 
general a nonlinear algebraic equation for the electric field that can have multiple solutions. 
An algorithm is proposed here to solve this equation and obtain a spatially continuous, tem- 
porally stable solution. For definiteness, this is applied to a bumpy torus, and it is shown that 
there exists a boundary in the density, electron temperature, and ion temperature space across 
which the potential changes abruptly from a spatial hill to a spatial well. 0 1985 Academic Press, 

Inc. 

I. INTRODUCTION 

For a toroidal nonaxisymmetric device it is supposed [ 1,2] that the radial elec- 
tric field can be determined from the constraint of steady-state ambipolarity. That 
is, this model posits that at every spatial location, the plasma reacts to ensure that 
the ion flux balances the electron flux. This determines the electric field, since if the 
fluxes are written as functions of the field, then ion and electron flux equality can 
only be satisfied at a finite number of values of the field. This is in contrast to the 
case for an axisymmetric tokamak, where the fluxes are equal for all values of the 
electric field. 

In general, this ambipolarity relationship is a nonlinear algebraic equation for the 
electric field (except possibly if the fluxes are deep in the large-orbit banana regime, 
where the orbit width depends on the spatial derivative of the electric field and, 
hence, the ambipolarity relationship is differential). This nonlinear algebraic 
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equation can have multiple solutions for some ranges of the density and tem- 
perature space. It can be shown for a given density (and density gradient) that if 
multiple solutions exist, then at least one of them is an unstable solution, while the 
others are stable. By this we mean that a small perturbation away from the unstable 
solution will grow while a small perturbation away from the attractive solutions 
will decay. 

For the multiple stable steady-state solutions the conceptual problem arises as 
how the plasma chooses which solution to exist on. In addition, the problem is 
compounded by the fact that the algebraic equation is spatially localized, so there is 
no explicit spatial connection between points. This implies that a spatially discon- 
tinuous electric field could be the solution of the steady-state ambipolarity 
relationship. 

There have been several attempts to resolve these conceptual difficulties. The 
earliest Cl] was to solve the time-dependent ambipolarity relationship. This 
procedure automatically chooses the stable solutions and indicates that the electric 
field solution found at any given radial location will be the stable solution closest to 
the initial data. However, this still has the problem that if the initial data are such 
that at one point a stable solution is found and at another point a different sta 
solution is found, then the electric field profile will be discontinuous. Recently [3, 
41, a second-order diffusion equation for the electric field was derived by extending 
the fluxes through fourth order in the deviation from a flux surface. This explicitly 
imposes continuity on the electric field solution and corresponds to the physically 
appealing notion that neighboring flux surfaces are linked through the finite orbit 
deviation from the flux surface. However, this approach has a number of problems. 
The first is that the fourth-order contribution to the flux is derived perturbatively, 
but when it is important, then the perturbation theory has broken down. The 
second problem is that constructing a second-order differential equation requires 
two boundary conditions for a complete solution. The boundary condition at the 
center of the plasma is obvious; that is, the electric field must be zero there from 
considerations of symmetry. The boundary condition at the edge of the plasma is 
not at all obvious and there is no clearly thought out reason to choose a given con- 
dition. Not surprisingly, detailed numerical experimentation with the diffusion 
equation has shown that the choice of the outer boundary condition can have a 
marked impact on the overall shape of the potential. 

In this paper, we outline a method for solving the steady-state ambipolarity 
equation in conjunction with the density and temperature equations. This done so 
as to impose the physical requirement of spatial continuity of the electric field aris- 
ing from the finite orbit width. 

In Section II, we describe our basic method; then in Section III we apply it for 
definiteness to a bumpy torus plasma and show that we can obtain continuous 
solutions. We also obtain a boundary in the electron-temperature, ion-temperature 
space across which the character of the potential changes. Finally, in Section IV, we 
discuss what future areas of research might be. 
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II. THE BASIC METHOD FOR SOLVING THE AMEUPOLARITY RELATIONSHIP 

The time-dependent ambipolarity relationship is given by Cl] 

where the prime (‘) means a/& and r is the radial flux variable defined by +r2B0 = CC, 
with B, the magnetic field on the magnetic axis and a the toroidal magnetic flux 
that labels the pressure surfaces. The variable Cp is the electrostatic potential (hence 
the radial electric field is E, = --a@/&). The dielectric function eL arises mainly 
from the polarization drift of the particles in the time-varying electric field. In a 
bumpy torus sl N c2~,4~nim~B~, where mi is the ion mass, c is the speed of light, 
and E,, is the free space dielectric constant. The charge number of species a is Z, ; n, 
is the density and T, the temperature of species a. The flux of species a is 

We can nondimensionalize Eq. (1) by defining zE = rp[sl T/(ena$], zp = az/D,,, 
E= -a,@‘/T, where ap is the plasma radius and n, T, and D,, are a reference den- 
sity, temperature, and diffusivity such that T,/(D,,n/u,) = O(1). We have 

-= -- (3) 

If we linearize Eq. (3) about its steady-state solution by writing ,!? = E. + ,!?, where 
i?<E,, we have 

which admits normal mode solutions of the form 8= Ee”‘, where the eigenvalue w 
is given by 

(4) 

If o ~0, then the steady-state solution is stable; if u)> 0, then it is unstable. We 
note that zp is a measure of the particle confinement time, which is roughly the time 
scale over which II, and T, change. For typical parameters (B, = 104G, ap = 20 cm, 
T= 300eV), we have zE<rp; hence, from Eq. (4) we deduce that for (u,/D,n) 
C, Z,ar,laE= 0( 1) the rate of relaxation of the ambipolarity equation to a stable 
steady-state is much faster than the rate at which the density and temperature are 
changing. Therefore, we consider only the steady-state version of Eq. (1). Physically 
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we have used the fact that the time for adjustment of the electric field is much faster 
than the time for changes in the density and temperature. This enables us to reduce 
the electric field equation from a first-order differential equation coupled to the den- 
sity and temperature equation to an algebraic equation on each flux surface solved 
with the instantaneous values of IZ, and T,. 

In Fig. 1, we plot the electron and ion fluxes against ’ for three typical 
situations with IZ and T,, Ti fixed. This is meaningful as long as the eletric field 
equation, Eq. (I), relaxes much faster than the density and temperature equations. 
In Fig. l(a) we show what the fluxes are like when there is only one electric field 
solution which is negative. This is called the ion root and corresponds to the 
magnetically confined electrons electrostatically retarding the ions. In Fig. l(b) we 
show three possible solutions. The most positive electric field one is called the elec- 
tron root and corresponds to magnetically confined ions electrostatically retarding 
the electrons. The root between the electron and ion roots is called the unstable 
root, since it is clear that a small perturbation away from it will grow. In Fig. l(c) 
we show a situation where only the electron root exists. The one situation where it 
is not meaningful to consider this equation for fixed n and T occurs when the 
unstable root is close to either of the stable roots (the ion or the electron root). 

0 ION ROOT .-@CO 

FE. 1. Ion flux r1 and electron flux r, vs electric field -@‘: (a) ion root only; (b) electron, ion, 
and unstable roots; (c) electron root only. 

581/61/2-7 
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Then the relaxation time to the stable solution close to the unstable root becomes 
very long (w + 0) and the electric field equation can couple effectively to the density 
and temperature equations, which change on the diffusion (T,) time scale. 

The electric field equation [Eq. (l)] is a nonlinear first-order equation in time 
and, for an arbitrary initial condition, will relax away from the unstable solution 
and towards a stable solution. Hence, in Fig. l(b), if the initial condition falls to the 
right of the unstable root, then the steady-state solution will be the electron root. 
Conversely, if the initial condition falls to the left of the unstable root, then the 
steady-state solution will be the ion root. This equation will always choose one if 
the stable solutions but may give rise to discontinuous electric field profiles. This 
can happen under two circumstances. The first is that at some radial location only 
an ion (electron) root exists and at another close point only an electron (ion) root 
exists. The second is that the initial conditions are such that, where there are two 
stable roots, then at a given point one of the roots is the solution and at a 
neighboring point the the other is. The second situation, although allowed by the 
equation, is unphysical, since what was neglected in obtaining the fluxes was the 
coupling between flux surfaces due to the finite orbit width. This leads to the dif- 
ferential term, which has been derived in [3]. This term will couple the two flux 
surfaces together in the second situation and make it very likely that if one is on the 
ion (electron) root then the other will be on the same root. In the first situation 
there is no choice, and what the differential coupling will do is provide a finite 
width to the root jumping region. We can express the preceding ideas 
mathematically by noting that from the steady-state solution of Eq. (1) we can 
write @‘=@‘(yla, T,, nh, ra). If at some point defined by (n,, T,, nb, TL) the 
solution is @‘, then the solution at a neighboring point (n, + Ann, T, +AT,, 
nh + An:, T:, + AT:) will be given by 

In Eq. (5), we have Taylor-expanded with the implicit assumption that all the 
partial derivatives of @’ are bounded in the region (it,, T,, nk, Ta) to (n, + An,, 
T, + AT,, nh + An:, TG + AT:). If this is so, then the electric field at (n, + An,,...) 
should be close to the electric field at (n,,... ). This assumption breaks down if 
@‘(n, + An, ,...) or @‘(n, ,... ) is very close to or on the unstable solution to the 
ambipolarity relationship. In this case, at (n,,...) only one root exists, while at 
(n, + An,,... ) only the other root exists. 

The density and temperature equations are diffusion equations that are solved 
using an implicit Crank-Nicholson scheme. The density equation is 
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where V(r) is the volume inside a pressure surface labelled by r and S, is the source 
of particles of species “a.” The electron temperature is given by 

where qe is the random heat flux and S, contains all the sources and sinks of 
energy to the electrons. These include ECH heating, electron-ion energy exchange, 
and losses due to electron impact ionization of neutrals. The ion temperature is 
given by 

where the sum cj is over all ion species that have an assumed common temperature 
ri. The term S, contains all the sources and sinks of energy to the ions. These 
include charge exchange losses, ICH heating, and ion-electron energy exchange. We 
obtain the electric field at the point r and at time t by solving the steady-state 
ambipolarity equation 

using a bisection root finder ZEROIN [IS]. The choice of this root finder ensures 
convergence. The bisection interval containing the root is obtained in the following 
manner. 

We solve Eq. (6) from the center of the plasma to the edge. If Ar is the finite dif- 
ference grid spacing and [u, b] is the bisection interval containing the root of Eq. 
(6) at (r, t), then we set 

a = @‘(r - Ar, t), (71 

b=@‘(r-Ar, t)-js,s,. (8) 

At r = 0 (the center of the plasma) we set a = 0 since we expect the electric field to 
vanish at the center of the plasma from symmetry considerations (flux cannot 
accumulate at the plasma center). In Eq. (S), j is the smallest integer such that 

[ 
~Z,r,(@‘=a) -p&r,(@‘=b) <o; 
a IL a 1 

S, is a step size, and sg is given by 

sg = sign c Z,I’,[@‘(r - Ar, t)] 
a 
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This choice of bisection interval will always bracket a stable root, as can be seen 
from Fig. l(b). If @‘(r - Ar, t) falls to the left of the ion root, then sg < 0 and point b 
will fall to the right of the ion root. If @‘(r - Ar, t) falls to the right of the ion root 
but to the left of the unstable root, then sg > 0 and point b will fall to the left of the 
ion root. Similarly, if @‘(r- Ar, t) falls to the right of the unstable root but to the 
left of the electron root, then sg < 0 and point b will fall to the right of the electron 
root. Finally, if @‘(r - Ar, t) falls to the right of the electron root, then sg > 0 and 
point b will fall to the left of the electron root. Since both ends of the besection 
interval are related to @‘(r - Ar, t), if the unstable root is more than sg away from 
the stable roots, then the root found will be the one closest to @‘(r- Ar, t). This 
tends to build in the physical notion that flux surfaces are coupled together through 
the finite orbit width. If the unstable root is closer than sg to one of the stable roots, 
then this way of choosing the bisection interval will bracket the other stable root. 
Hence, in Fig. l(b), if the unstable root and the ion root are about to coalesce, then 
the finite step size s, will cause the electron root to be bracketed. In addition, in this 
case it may be that @‘(r - Ar, t) falls between the unstable root and the electron 
root. Then the electron root will be bracketed. This numerical root jumping will 
only occur when the unstable root is very close to a stable root and can be regarded 
as simulating the effect of noise on the choice of the root. It has been shown [6] 
that when the unstable root is close to a stable root, then the solution is very sen- 
sitive to small fluctuations (which occur in all real plasmas) and has a high 
probability of evolving to the other stable root. 

This choice of the bisection interval in combination with a bisection root finder 
will always find a stable solution and will tend to find a spatially continuous 
solution. We remark that this procedure at the finite-difference level is conceptually 
the same as solving a first-order differential equation for the electric field implicitly, 
where the derivative of the electric field is multiplied by a small parameter. This 
small parameter can be regarded as the finite orbit deviation from the flux surface. 

We comment that this procedure does not exclude the possibility of a shock-like 
structure for the electric field. This will happen when only the ion root exists at one 
radial location and only the electron root exists at a neighboring location. This 
procedure will exclude such a possibility when a continuous solution can also be 
found. 

III. APPLICATION TO A BUMPY TORUS PLASMA 

To illustrate the electric field algorithm, the equations were solved for a bumpy 
torus plasma. The configuration, diffusion coefficients, and equations used were the 
same as in [7], except that the electric field was obtained self-consistently. The den- 
sity and temperature equations were evolved to steady-state conditions for a fixed 
volume-averaged density, volume-averaged electron temperature, and volume- 
averaged ion temperature. 
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In Fig. 2, we plot the potential profile against major radius and volume-averaged 
ion temperature. The volume-averaged density and electron temperature were kept 
fixed in these figures. These plots were motivated by experimental observations that 
the polarity of the potential changes as a function of ion temperature [S]. In 
Fig.Z!(a) we have (n) = 5 x 101’ cmM3, (T,) = 140 SV ((...> = (l/V) j dt/...), and 
we see that the potential for small ion temperatures is a hill; then, as the ion tem- 
perature increases, it changes abruptly to a well at every spatial point. For low ion 
temperatures the electric field is positive because for these parameters the ions are 
collisional and the electrons are collisionless. Hence the electron loss rate exceeds 
the ion loss rate, thus forcing the electric field to be positive. As the ion temperature 
is increased, the ions become collisionless and the ion loss rate begins to excee 
electron loss rate. This forces the electric field to be negative everywhere to retar 
the Iossy ions. In Fig. 2(b) we take (n) = 5 x 10”’ cm-3, (T,) = 50 eV, and change 
the ion temperature from 15 to 25 eV. As before, the potential is a hill, but as the 
ion temperature increases it becomes a well, first in the center, that then spreads 
toward the edge as the temperature increases. This is because at the edge of the 
plasma the temperature is low and the edge ions stay collisional after the center has 
jumped roots. 

In Fig. 3, we show a typical case where the electric field was positive everywhere 
(a potential hill), but a negative electric field solution also existed at the edge of the 
plasma. The negative electric field solution was found by taking one end of the 
bisection interval to be large negative value. This shows another advantage of using 
this root tinder approach: it is easy to check for other possible solutions by varying 
the initial guess. In this case, the electric field was taken to be the one that was 
positive everywhere, which is also the one that has no discontinuity in the solution. 
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FIG. 2. Potential CD vs (Ti) and major radius R: (a) (n) = 5 x iO’* cm-3, (T,) = 14OeV; 
(b) (n)=5~10~~cm-~, (T,)=50eV. 
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FIG. 3. Electric field -CD’ vs normalized radius for a continuous positive solution with a negative 
solution at the edge. The plasma parameters are (T,) = 50 eV, (n) = 5 x 10” crnd3, (T,) = 18 eV. 

In Fig. 4, we show a case for which a positive solution was found at the edge of the 
plasma, in addition to the continuous negative solution, As in Fig. 3, the algorithm 
chose the continuous solution. 

These results on the change of the polarity of the potential are summrized in 
Fig. 5. We plot the boundary across which the potential changes in the (T,), (T,) 
plane for fixed (n). In Fig. 5, we have (n) = 5 x lo”, 5 x 1012, and 5 x lOi cmP3. 
On the right side of each curve the potential is positive, while on the left side it is 
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FIG. 4. Electric field -CD,’ vs normalized radius for a continuous negative solution with a positive 
solution at the edge. The plasma parameters are (T,) = 140 eV, (n) = 5 x 1012 cm1113, ( Ti) = 100 eV. 
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FIG. 5. Boundaries in (T,), (T,) plane across which potential polarity changes. 

negative. As the density increases, the curve moves to the right because the 
colhsionality increases. This means that at a given ion temperature the electron 
temperature has to increase in order for the electron collisionality to drop into the 
collisionless regime and give lossy electrons. These curves become almost parallel to 
the ( Ti > axis for large (T,) and indicate that a jump to the electron root for large 
(Ti) is largeiy facilitated by increasing (T,), not (Ti). This would indicate that 
electron heating is desirable for encouraging the formation of the electron root, 
which has been predicted to be the more favorable root [2J 

IV. CONCLUSION 

We have described a method for obtaining the electric field in a nonaxisymmetric 
device that will tend to give spatially continuous, temporally stable electric fields. 
We have applied it to a bumpy torus, and we have obtained boundaries in the 
(T,), (pi) space across which the potential changes polarity for a given density. 
These plots are useful for indicating what sort of heating could be useful in 
encouraging the transition of the plasma to one or the other stable root. 

Future areas of research to consider are the effect of direct losses on the radial 
electric field and the effect of rf-driven diffusion. Direct losses may introduce 
integral expressions for the electric field; rf diffusion will depend also on the 
microwave power and how that changes the lossiness of each species” 
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